3.2.67 \(\int \frac {(a x^2+b x^3)^{3/2}}{x^4} \, dx\)

Optimal. Leaf size=74 \[ -2 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {a x^2+b x^3}}\right )+\frac {2 a \sqrt {a x^2+b x^3}}{x}+\frac {2 \left (a x^2+b x^3\right )^{3/2}}{3 x^3} \]

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {2021, 2008, 206} \begin {gather*} -2 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {a x^2+b x^3}}\right )+\frac {2 a \sqrt {a x^2+b x^3}}{x}+\frac {2 \left (a x^2+b x^3\right )^{3/2}}{3 x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*x^2 + b*x^3)^(3/2)/x^4,x]

[Out]

(2*a*Sqrt[a*x^2 + b*x^3])/x + (2*(a*x^2 + b*x^3)^(3/2))/(3*x^3) - 2*a^(3/2)*ArcTanh[(Sqrt[a]*x)/Sqrt[a*x^2 + b
*x^3]]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2008

Int[1/Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[2/(2 - n), Subst[Int[1/(1 - a*x^2), x], x, x/Sq
rt[a*x^2 + b*x^n]], x] /; FreeQ[{a, b, n}, x] && NeQ[n, 2]

Rule 2021

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b
*x^n)^p)/(c*(m + n*p + 1)), x] + Dist[(a*(n - j)*p)/(c^j*(m + n*p + 1)), Int[(c*x)^(m + j)*(a*x^j + b*x^n)^(p
- 1), x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && G
tQ[p, 0] && NeQ[m + n*p + 1, 0]

Rubi steps

\begin {align*} \int \frac {\left (a x^2+b x^3\right )^{3/2}}{x^4} \, dx &=\frac {2 \left (a x^2+b x^3\right )^{3/2}}{3 x^3}+a \int \frac {\sqrt {a x^2+b x^3}}{x^2} \, dx\\ &=\frac {2 a \sqrt {a x^2+b x^3}}{x}+\frac {2 \left (a x^2+b x^3\right )^{3/2}}{3 x^3}+a^2 \int \frac {1}{\sqrt {a x^2+b x^3}} \, dx\\ &=\frac {2 a \sqrt {a x^2+b x^3}}{x}+\frac {2 \left (a x^2+b x^3\right )^{3/2}}{3 x^3}-\left (2 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {x}{\sqrt {a x^2+b x^3}}\right )\\ &=\frac {2 a \sqrt {a x^2+b x^3}}{x}+\frac {2 \left (a x^2+b x^3\right )^{3/2}}{3 x^3}-2 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {a x^2+b x^3}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 68, normalized size = 0.92 \begin {gather*} \frac {2 x \sqrt {a+b x} \left (\sqrt {a+b x} (4 a+b x)-3 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )\right )}{3 \sqrt {x^2 (a+b x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*x^2 + b*x^3)^(3/2)/x^4,x]

[Out]

(2*x*Sqrt[a + b*x]*(Sqrt[a + b*x]*(4*a + b*x) - 3*a^(3/2)*ArcTanh[Sqrt[a + b*x]/Sqrt[a]]))/(3*Sqrt[x^2*(a + b*
x)])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 10.83, size = 76, normalized size = 1.03 \begin {gather*} \frac {\left (x^2 (a+b x)\right )^{3/2} \left (\frac {2}{3} \left ((a+b x)^{3/2}+3 a \sqrt {a+b x}\right )-2 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )\right )}{x^3 (a+b x)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a*x^2 + b*x^3)^(3/2)/x^4,x]

[Out]

((x^2*(a + b*x))^(3/2)*((2*(3*a*Sqrt[a + b*x] + (a + b*x)^(3/2)))/3 - 2*a^(3/2)*ArcTanh[Sqrt[a + b*x]/Sqrt[a]]
))/(x^3*(a + b*x)^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 130, normalized size = 1.76 \begin {gather*} \left [\frac {3 \, a^{\frac {3}{2}} x \log \left (\frac {b x^{2} + 2 \, a x - 2 \, \sqrt {b x^{3} + a x^{2}} \sqrt {a}}{x^{2}}\right ) + 2 \, \sqrt {b x^{3} + a x^{2}} {\left (b x + 4 \, a\right )}}{3 \, x}, \frac {2 \, {\left (3 \, \sqrt {-a} a x \arctan \left (\frac {\sqrt {b x^{3} + a x^{2}} \sqrt {-a}}{a x}\right ) + \sqrt {b x^{3} + a x^{2}} {\left (b x + 4 \, a\right )}\right )}}{3 \, x}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x^2)^(3/2)/x^4,x, algorithm="fricas")

[Out]

[1/3*(3*a^(3/2)*x*log((b*x^2 + 2*a*x - 2*sqrt(b*x^3 + a*x^2)*sqrt(a))/x^2) + 2*sqrt(b*x^3 + a*x^2)*(b*x + 4*a)
)/x, 2/3*(3*sqrt(-a)*a*x*arctan(sqrt(b*x^3 + a*x^2)*sqrt(-a)/(a*x)) + sqrt(b*x^3 + a*x^2)*(b*x + 4*a))/x]

________________________________________________________________________________________

giac [A]  time = 0.17, size = 85, normalized size = 1.15 \begin {gather*} \frac {2 \, a^{2} \arctan \left (\frac {\sqrt {b x + a}}{\sqrt {-a}}\right ) \mathrm {sgn}\relax (x)}{\sqrt {-a}} + \frac {2}{3} \, {\left (b x + a\right )}^{\frac {3}{2}} \mathrm {sgn}\relax (x) + 2 \, \sqrt {b x + a} a \mathrm {sgn}\relax (x) - \frac {2 \, {\left (3 \, a^{2} \arctan \left (\frac {\sqrt {a}}{\sqrt {-a}}\right ) + 4 \, \sqrt {-a} a^{\frac {3}{2}}\right )} \mathrm {sgn}\relax (x)}{3 \, \sqrt {-a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x^2)^(3/2)/x^4,x, algorithm="giac")

[Out]

2*a^2*arctan(sqrt(b*x + a)/sqrt(-a))*sgn(x)/sqrt(-a) + 2/3*(b*x + a)^(3/2)*sgn(x) + 2*sqrt(b*x + a)*a*sgn(x) -
 2/3*(3*a^2*arctan(sqrt(a)/sqrt(-a)) + 4*sqrt(-a)*a^(3/2))*sgn(x)/sqrt(-a)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 61, normalized size = 0.82 \begin {gather*} \frac {2 \left (b \,x^{3}+a \,x^{2}\right )^{\frac {3}{2}} \left (-3 a^{\frac {3}{2}} \arctanh \left (\frac {\sqrt {b x +a}}{\sqrt {a}}\right )+3 \sqrt {b x +a}\, a +\left (b x +a \right )^{\frac {3}{2}}\right )}{3 \left (b x +a \right )^{\frac {3}{2}} x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^3+a*x^2)^(3/2)/x^4,x)

[Out]

2/3*(b*x^3+a*x^2)^(3/2)*(-3*a^(3/2)*arctanh((b*x+a)^(1/2)/a^(1/2))+(b*x+a)^(3/2)+3*(b*x+a)^(1/2)*a)/x^3/(b*x+a
)^(3/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (b x^{3} + a x^{2}\right )}^{\frac {3}{2}}}{x^{4}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x^2)^(3/2)/x^4,x, algorithm="maxima")

[Out]

integrate((b*x^3 + a*x^2)^(3/2)/x^4, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (b\,x^3+a\,x^2\right )}^{3/2}}{x^4} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x^2 + b*x^3)^(3/2)/x^4,x)

[Out]

int((a*x^2 + b*x^3)^(3/2)/x^4, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (x^{2} \left (a + b x\right )\right )^{\frac {3}{2}}}{x^{4}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**3+a*x**2)**(3/2)/x**4,x)

[Out]

Integral((x**2*(a + b*x))**(3/2)/x**4, x)

________________________________________________________________________________________